Hlavní

Ateroskleróza

Kardiovaskulární systém: struktura a funkce

Lidský kardiovaskulární systém (oběhový - zastaralý název) je komplex orgánů, které zásobují všechny části těla (s několika výjimkami) nezbytnými látkami a odstraňují odpadní produkty. Je to kardiovaskulární systém, který poskytuje všem částem těla potřebný kyslík, a proto je základem života. V některých orgánech není krevní oběh: oční čočky, vlasy, nehty, sklovina a dentin zubu. V kardiovaskulárním systému existují dvě složky: komplex samotného oběhového systému a lymfatického systému. Tradičně, oni jsou zvažováni odděleně. Navzdory jejich rozdílnosti však vykonávají řadu společných funkcí a mají také společný původ a plán struktury.

Anatomie oběhového systému zahrnuje jeho rozdělení na 3 složky. Výrazně se liší ve struktuře, ale funkčně se jedná o celek. Jedná se o následující orgány:

Druh čerpadla, který pumpuje krev do cév. Jedná se o svalový vláknitý dutý orgán. Nachází se v dutině hrudníku. Organová histologie rozlišuje několik tkání. Nejdůležitější a významná velikost je svalnatá. Uvnitř i vně je orgán pokryt vláknitou tkání. Dutiny srdce jsou rozděleny přepážkami do 4 komor: atria a komory.

U zdravého člověka se srdeční frekvence pohybuje od 55 do 85 úderů za minutu. To se děje po celý život. Více než 70 let se tak sníží o 2,6 miliardy. V tomto případě srdce pumpuje asi 155 milionů litrů krve. Hmotnost orgánu se pohybuje od 250 do 350 g. Kontrakce srdečních komor se nazývá systola a relaxace se nazývá diastole.

Jedná se o dlouhou dutou trubku. Odstupují od srdce a opakovaně se roztahují do všech částí těla. Ihned po opuštění dutin mají cévy maximální průměr, který se zmenšuje, jakmile je odstraněn. Existuje několik typů plavidel:

  • Tepny. Nosí krev ze srdce na okraj. Největší z nich je aorta. Opouští levou komoru a přenáší krev do všech cév kromě plic. Větve aorty jsou mnohokrát rozděleny a pronikají do všech tkání. Plicní tepna přenáší krev do plic. Pochází z pravé komory.
  • Cévy mikrovaskulatury. Jedná se o arterioly, kapiláry a žilky - nejmenší cévy. Krev skrze arterioly je v tloušťce tkání vnitřních orgánů a kůže. Rozvětvují se do kapilár, které vyměňují plyny a jiné látky. Poté se krev odebírá do žilek a protéká.
  • Žíly jsou cévy, které přenášejí krev do srdce. Jsou tvořeny zvýšením průměru žilek a jejich vícenásobnou fúzí. Největšími plavidly tohoto typu jsou dolní a horní duté žíly. Přímo proudí do srdce.

Zvláštní tkáň těla, tekutina, se skládá ze dvou hlavních složek:

Plazma je kapalná část krve, ve které jsou umístěny všechny vytvořené prvky. Procento je 1: 1. Plazma je zakalená nažloutlá kapalina. Obsahuje velké množství proteinových molekul, sacharidů, lipidů, různých organických sloučenin a elektrolytů.

Krevní buňky zahrnují: erytrocyty, leukocyty a destičky. Jsou tvořeny v červené kostní dřeni a cirkulují přes cévy po celý život člověka. Pouze za určitých okolností (zánět, zavedení cizího organismu nebo hmoty) mohou projít cévní stěnou do extracelulárního prostoru pouze leukocyty.

Dospělý obsahuje 2,5-7,5 ml (v závislosti na hmotnosti) ml krve. Novorozenec - od 200 do 450 ml. Nádoby a práce srdce jsou nejdůležitějším ukazatelem oběhového systému - krevního tlaku. Rozsah je od 90 mm Hg. do 139 mm Hg pro systolický a 60-90 - pro diastolický.

Všechna plavidla tvoří dva uzavřené kruhy: velké a malé. To zajišťuje nepřerušovaný současný přísun kyslíku do těla a výměnu plynu v plicích. Každý oběh začíná od srdce a končí tam.

Malé přechází z pravé komory přes plicní tepnu do plic. Zde se několikrát rozvětvuje. Krevní cévy tvoří hustou kapilární síť kolem všech průdušek a alveol. Prostřednictvím nich probíhá výměna plynu. Krev, bohatá na oxid uhličitý, ji dodává do dutiny alveolů a na oplátku dostává kyslík. Poté se kapiláry postupně spojí do dvou žil a jdou do levého atria. Plicní oběh končí. Krev přechází do levé komory.

Velký kruh krevního oběhu začíná od levé komory. Během systoly, krev jde do aorty, od kterého mnoho cév (tepny) odbočí. Oni jsou rozděleni několikrát, než se změní v kapiláry, které zásobují celé tělo krví - od kůže k nervovému systému. Zde je výměna plynů a živin. Poté se krev postupně odebírá ve dvou velkých žilách a dosahuje pravé síně. Velký kruh končí. Krev z pravé síně vstupuje do levé komory a vše začíná znovu.

Kardiovaskulární systém vykonává v těle řadu důležitých funkcí:

  • Výživa a zásobování kyslíkem.
  • Udržení homeostázy (stálost podmínek v celém organismu).
  • Ochrana.

Dodávka kyslíku a živin je následující: krev a její složky (červené krvinky, bílkoviny a plazma) dodávají kyslík, sacharidy, tuky, vitamíny a stopové prvky jakékoli buňce. Současně z nich berou oxid uhličitý a nebezpečný odpad (odpadní produkty).

Trvalé stavy v těle jsou zajištěny samotnou krví a jejími složkami (erytrocyty, plazma a proteiny). Nejenže působí jako nosiče, ale také regulují nejdůležitější ukazatele homeostázy: ph, tělesná teplota, vlhkost, množství vody v buňkách a mezibuněčný prostor.

Lymfocyty hrají přímou ochrannou roli. Tyto buňky jsou schopny neutralizovat a ničit cizí látky (mikroorganismy a organické látky). Kardiovaskulární systém zajišťuje jejich rychlé dodání do kteréhokoliv koutku těla.

Během intrauterinního vývoje má kardiovaskulární systém řadu funkcí.

  • Mezi atrií ("oválným oknem") je vytvořena zpráva. Poskytuje přímý přenos krve mezi nimi.
  • Plicní oběh nefunguje.
  • Krev z plicní žíly přechází do aorty zvláštním otevřeným kanálem (Batalovův kanál).

Krev je obohacena kyslíkem a živinami v placentě. Odtud, přes pupeční žílu, to jde do břišní dutiny přes otvor stejného jména. Nádoba pak teče do jaterní žíly. Z místa, kde prochází orgánem, vstupuje krev do spodní duté žíly, do vyprazdňování, proudí do pravé síně. Odtud téměř celá krev jde doleva. Pouze malá část je vhozena do pravé komory a pak do plicní žíly. Orgánová krev se odebírá do pupečníkových tepen, které jdou do placenty. Zde je opět obohacen kyslíkem, dostává živiny. Zároveň oxid uhličitý a metabolické produkty dítěte přecházejí do mateřské krve, organismu, který je odstraňuje.

Kardiovaskulární systém u dětí po porodu prochází řadou změn. Batalovův kanál a oválný otvor jsou zarostlé. Umbilikální cévy se vyprázdní a promění v kulatý vaz jater. Plicní oběh začne fungovat. 5-7 dnů (maximálně - 14), kardiovaskulární systém získává funkce, které přetrvávají v osobě po celý život. Pouze množství cirkulující krve se mění v různých časech. Zpočátku se zvyšuje a dosahuje svého maxima ve věku 25-27 let. Až po 40 letech se objem krve začíná mírně snižovat a po 60-65 letech zůstává v rozmezí 6-7% tělesné hmotnosti.

V některých obdobích života se množství cirkulující krve dočasně zvyšuje nebo snižuje. Během těhotenství se tedy objem plazmy zvyšuje o více než originál o 10%. Po porodu klesá na 3 až 4 týdny. Při hladovění a nepředvídané fyzické námaze se množství plazmy sníží o 5-7%.

Struktura srdce

Srdce váží asi 300 gramů a má tvar grapefruitu (obrázek 1); má dvě síně, dvě komory a čtyři ventily; přijímá krev ze dvou vena cava a čtyř plicních žil a hodí ji do aorty a plicního trupu. Srdce pumpuje 9 litrů krve denně, což činí 60 až 160 úderů za minutu.

Srdce je pokryto hustou vláknitou membránou - perikardem, který tvoří serózní dutinu naplněnou malým množstvím tekutiny, která zabraňuje tření během jeho kontrakce. Srdce je tvořeno dvěma páry komor - komorami a komorami, které působí jako samostatná čerpadla. Pravá polovina srdce „pumpuje“ venózní krev bohatou na oxid uhličitý přes plíce; je to malý kruh krevního oběhu. Levá polovina vyvolá okysličenou krev z plic do systémového oběhu.

Venózní krev z horní a dolní duté žíly spadá do pravé síně. Čtyři plicní žíly dodávají arteriální krev do levé síně.

Atrioventrikulární chlopně mají speciální papilární svaly a tenké šlachové nitě připojené ke koncům špičatých hran ventilů. Tyto útvary fixují chlopně a zabraňují jim „padat“ (prolaps) zpět do atrií během komorové systoly.

Levá komora je tvořena tlustšími svalovými vlákny než ta pravá, protože odolává vyššímu krevnímu tlaku ve větším oběhu a musí dělat skvělou práci při jeho překonávání během systoly. Mezi komorami a aortou a plicním kmenem vyčnívajícím z nich jsou polopunární chlopně.

Ventily (obr. 2) umožňují průtok krve srdcem pouze jedním směrem, což zabraňuje jeho návratu. Ventily se skládají ze dvou nebo tří listů, které se k sobě přibližují a uzavírají průchod, jakmile krev prochází ventilem. Mitrální a aortální chlopně regulují průtok okysličené krve z levé strany; trikuspidální chlopně a plicní chlopně řídí průchod krve zbavené kyslíku doprava.

Uvnitř dutiny srdce je lemována endokardem a rozdělena podél dvou polovin kontinuální atriální a interventrikulární septa.

Poloha

Srdce je v hrudi za hrudní kostí a před sestupnou částí oblouku aorty a jícnu. Je upevněn na centrálním vazu svalů membrány. Na obou stranách je jedna plíce. Nahoře jsou hlavní cévy a místo oddělení trachey do dvou hlavních průdušek.

Systém automatizace srdce

Jak víte, srdce se může zmenšit nebo pracovat mimo tělo, tj. izolovaně. Pravdou je, že může provést krátký čas. S vytvořením normálních podmínek (výživa a kyslík) pro jeho práci, to může být redukováno téměř k nekonečnu. Tato schopnost srdce je spojena se speciální strukturou a metabolismem. V srdci se rozlišují pracovní svaly, reprezentované pruhovaným svalem (obrázek) a speciální tkání, ve které dochází k excitaci a provádí se.

Speciální tkáň se skládá z nediferencovaných svalových vláken. V některých částech srdce se nachází značné množství nervových buněk, nervových vláken a jejich zakončení, které zde tvoří nervovou síť. Akumulace nervových buněk v určitých částech srdce se nazývají uzly. Pro tyto uzly jsou vhodná nervová vlákna z vegetativního nervového systému (vagus a sympatické nervy), u vyšších obratlovců, včetně lidí, atypická tkáň sestává z:

1. umístěný v uchu pravé síně, sinoatrial uzel, který je vedoucí uzel (“Pace-meker” já objednávám) a posílat pulsy k dvěma atria, působit je k systole;

2. atrioventrikulární uzel (atrioventrikulární uzel) umístěný ve stěně pravé síně v blízkosti přepážky mezi síní a komorami;

3) atrioventrikulární svazek (svazek jeho) (obrázek 3).

Excitace, která nastala v sinoatriálním uzlu, je přenesena do uzlu atrioventrikulární ("Pace-Maker" II) a rychle se šíří podél větví jeho svazku, což způsobuje současnou kontrakci (systolu) komor.

Podle moderních pojmů je důvod pro automatizaci srdce vysvětlen tím, že v procesu vitální činnosti jsou produkty konečného metabolismu (CO).2, kyseliny mléčné atd.), které způsobují výskyt excitace ve speciální tkáni.

Koronární oběh

Myokard přijímá krev z pravé a levé koronární arterie, která se rozprostírá přímo od aortálního oblouku a je její první větví (obrázek 3). Žilní krev je vypouštěna do pravé síně koronárními žilami.

Během diastoly (obr. 4) atria (A) proudí krev z horní a dolní duté žíly do pravé předsíně (1) a ze čtyř plicních žil do levé síně (2). Průtok se zvyšuje v průběhu inspirace, když podtlak uvnitř hrudníku přispívá k "sání" krve v srdci, jako je vzduch do plic. OK to může

manifestní respirační (sinus) arytmie.

Systémová systola končí (C), když excitace dosáhne atrioventrikulárního uzlu a šíří se podél větví jeho větve, což způsobuje ventrikulární systolu. Atrioventrikulární chlopně (3, 4) rychle zabouchly, šlachy a papilární svaly komor brání jejich zabalení (prolapsu) do atria. Venózní krev vyplňuje atria (1, 2) během jejich diastoly a ventrikulární systoly.

Když komorová systola končí (B), tlak v nich klesá, dva atrioventrikulární chlopně - 3-křídlové (3) a mitrální (4) - otevřené a krev proudí z předsíní (1,2) do komor. Další vlna excitace ze sinusového uzlu, která se šíří, způsobuje atriální systolu, během které je další část krve čerpána zcela otevřenými atrioventrikulárními otvory do uvolněných komor.

Rychle se zvyšující tlak v komorách (D) otevírá aortální ventil (5) a ventil plicního trupu (6); proudy krve spěchají do velkých a malých kruhů krevního oběhu. Pružnost arteriálních stěn způsobuje, že ventily (5, 6) prudce vybuchnou na konci komorové systoly.

Zvuky plynoucí z náhlého úderu atrioventrikulárních a semilunárních chlopní jsou slyšet přes hrudní stěnu, jak zní srdce - „tuk-tuk“.

Regulace srdeční činnosti

Srdeční frekvence je regulována vegetativními centry podlouhlé a míchy. Parasympatické (putující) nervy snižují rytmus a sílu a zvyšují se sympatické nervy, zejména při fyzickém a emocionálním stresu. Adrenalinový hormon má podobný účinek na srdce. Chemoreceptory karotického těla reagují na snížení hladiny kyslíku a zvýšení oxidu uhličitého v krvi, což vede k tachykardii. Baroreceptory karotického sinusu vysílají signály podél aferentních nervů do vazomotorických a srdečních center medulla oblongata.

Krevní tlak

Krevní tlak se měří ve dvou číslicích. Systolický nebo maximální tlak odpovídá uvolnění krve do aorty; diastolický nebo minimální tlak odpovídá uzavření aortální chlopně a ventrikulární relaxaci. Pružnost velkých tepen jim umožňuje pasivně expandovat a kontrakci svalové vrstvy - udržovat průtok arteriální krve během diastoly. Ztráta pružnosti s věkem je doprovázena zvýšeným tlakem. Krevní tlak se měří sfygmomanometrem v milimetrech rtuti. Čl. U dospělého zdravého člověka v uvolněném stavu, v sedě nebo v leže, je systolický tlak přibližně 120-130 mm Hg. A diastolický - 70-80 mm Hg S věkem se tato čísla zvyšují. Ve vzpřímené poloze mírně stoupá krevní tlak v důsledku neuroreflexní kontrakce malých krevních cév.

Cévy

Krev začíná svou cestu skrze tělo, zanechává levou komoru přes aortu. V této fázi je krev bohatá na kyslík, potraviny, rozdělené na molekuly a další důležité látky, jako jsou hormony.

Tepny přenášejí krev ze srdce a žíly jej navracejí. Tepny, stejně jako žíly, se skládají ze čtyř vrstev: ochranné vláknité membrány; střední vrstva tvořená hladkými svaly a elastickými vlákny (ve velkých tepnách je nejsilnější); tenká vrstva pojivové tkáně a vnitřní buněčná vrstva - endothelium.

Tepny

Krev v tepnách (obrázek 5) je pod vysokým tlakem. Přítomnost elastických vláken umožňuje tepnám pulzovat - expandovat s každým tepem a ustupovat, když krevní tlak klesá.

Velké tepny jsou rozděleny na střední a malé (arterioly), jejichž stěna má svalovou vrstvu inervovanou vegetativním vazokonstriktorem a vazodilatačními nervy. Jako výsledek, arteriole tón může být řízen vegetativními nervovými centry, který dovolí vám řídit tok krve. Z tepen proudí krev do menších arteriol, které vedou do všech orgánů a tkání těla, včetně samotného srdce, a pak se rozvětvují do široké sítě kapilár.

V kapilárách se krevní buňky seřadí v jedné řadě, rozdávají kyslík a další látky a berou oxid uhličitý a další metabolické produkty.

Když tělo spočívá, krev má tendenci protékat takzvanými preferovanými kanály. Jsou to kapiláry, které zvýšily a překročily průměrnou velikost. Pokud však některá část těla potřebuje více kyslíku, krev proudí všemi kapilárami této části.

Žíly a žilní krev

Od tepen do kapilár a jejich průchodu krev vstupuje do žilního systému (Obrázek 6). To nejprve zadá velmi malé nádoby volaly venules, který být ekvivalentní k arterioles.

Krev pokračuje svou cestou skrze malé žíly a vrací se do srdce přes žíly, které jsou dostatečně velké a viditelné pod kůží. Tyto žíly obsahují ventily, které zabraňují návratu krve do tkání. Ventily mají tvar malého půlměsíce, vyčnívající do lumen kanálu, který způsobuje průtok krve pouze jedním směrem. Krev vstupuje do žilního systému, prochází nejmenšími cévami - kapilárami. Stěnami kapilár dochází k výměně mezi krví a extracelulární tekutinou. Většina tkáňové tekutiny se vrací do žilních kapilár a některé vstupují do lymfatického lůžka. Větší žilní cévy mohou kontraktovat nebo expandovat, aby regulovaly průtok krve v nich (Obrázek 7). Pohyb žil je velmi kvůli tónu kosterních svalů obklopovat žíly, který, tím, že se zkrátí (1), stlačit žíly. Pulzace tepen přilehlých k žilám (2) má účinek čerpadla.

Semilunární chlopně (3) jsou umístěny ve stejné vzdálenosti ve velkých žilách, zejména dolních končetinách, což umožňuje, aby se krev pohybovala pouze jedním směrem - k srdci.

Všechny žíly z různých částí těla se nevyhnutelně sbíhají do dvou velkých krevních cév, z nichž jedna se nazývá vyšší vena cava a druhá nižší vena cava. Nadřazená vena cava sbírá krev z hlavy, paží, krku; spodní vena cava přijímá krev ze spodních částí těla. Obě žíly dávají krev na pravou stranu srdce, odkud je tlačena do plicní tepny (jediná tepna, která nese krev, která je zbavena kyslíku). Tato tepna bude přenášet krev do plic.

Bezpečnostní mechanismus 6e

V některých oblastech těla, jako jsou paže a nohy, jsou tepny a jejich větve spojeny tak, aby se přehnuly a vytvořily další alternativní kanál pro krev v případě poškození některé z tepen nebo větví. Tento kanál se nazývá další kolaterální oběh. V případě poškození tepny se rozšiřuje větve sousední tepny, což zajišťuje dokonalejší krevní oběh. Během fyzické námahy těla, například při běhu, se zvětšují krevní cévy svalů nohou a krevní cévy střeva jsou zakryty, aby se krev dostala do místa, kde je potřeba. Když se člověk po jídle opře, dojde k obrácení. To přispívá k obtokovým cestám krevního oběhu, které se nazývají anastamózy.

Žíly jsou často navzájem spojeny pomocí speciálních "mostů" - anastomóz. Výsledkem je, že průtok krve může být "kulatý", pokud se v určité části žíly objeví křeč nebo se zvýší tlak se svalovou kontrakcí a pohybem vazů. Kromě toho jsou malé žíly a tepny spojeny pomocí arterio-venulárních anastomóz, které poskytují přímý "výtok" arteriální krve do žilního lůžka a obcházejí kapiláry.

Distribuce a průtok krve

Krev v cévách není rovnoměrně rozdělena do cévního systému. V daném čase je přibližně 12% krve v tepnách a žilách, které přenášejí krev do plic a z plic. Přibližně 59% krve je v žilách, 15% v tepnách, 5% v kapilárách a zbývajících 9% v srdci. Rychlost průtoku krve není stejná pro všechny části systému. Krev, proudící ze srdce, prochází obloukem aorty rychlostí 33 cm / s; ale v době, kdy dosáhne kapilár, jeho tok zpomaluje a rychlost se pohybuje okolo 0,3 cm / s. Reverzní průtok krve žilemi je značně zvýšen, takže rychlost krve v okamžiku vstupu do srdce je 20 cm / s.

Regulace krevního oběhu

V dolní části mozku se nachází sekce zvaná vazomotorické centrum, které kontroluje krevní oběh a následně krevní tlak. Cévy, které jsou zodpovědné za sledování situace v oběhovém systému, jsou arterioly umístěné mezi malými tepnami a kapilárami v krevním oběhu. Cévní centrum dostává informace o úrovni krevního tlaku z nervů citlivých na tlak umístěných v aortě a karotických tepnách a poté vysílá signály do arteriol.

Lidský kardiovaskulární systém

Struktura kardiovaskulárního systému a jeho funkce jsou klíčové znalosti, které osobní trenér potřebuje vybudovat kompetentní tréninkový proces pro oddělení, založený na nákladech odpovídající jejich úrovni přípravy. Před pokračováním ve výstavbě vzdělávacích programů je nutné pochopit princip fungování tohoto systému, jak se krev čerpá tělem, jak se to děje a co ovlivňuje výkonnost jeho plavidel.

Úvod

Kardiovaskulární systém je nezbytný pro to, aby tělo mohlo přenášet živiny a složky a eliminovat metabolické produkty z tkání, udržovat stálost vnitřního prostředí těla, optimální pro jeho fungování. Srdce je jeho hlavní složkou, která působí jako čerpadlo, které pumpuje krev tělem. Srdce je zároveň jen částí celého oběhového systému těla, který nejprve pohání krev ze srdce do orgánů a pak z nich zpět do srdce. Budeme také zvažovat odděleně arteriální a odděleně venózní systémy krevního oběhu člověka.

Struktura a funkce lidského srdce

Srdce je druh čerpadla skládající se ze dvou komor, které jsou vzájemně propojeny a zároveň nezávislé na sobě. Pravá komora pohání krev plícemi, levá komora ji pohání zbytkem těla. Každá polovina srdce má dvě komory: atrium a komoru. Můžete je vidět na obrázku níže. Pravá a levá síň působí jako rezervoár, ze kterého krev vstupuje přímo do komor. V době kontrakce srdce obě komory tlačí krev ven a projíždějí ji systémem plicních i periferních cév.

Struktura lidského srdce: 1-plicní kmen; 2-ventilová plicní tepna; 3-superior vena cava; 4-pravá plicní tepna; 5-pravá plicní žíla; 6-pravé atrium; 7-trikuspidální ventil; 8. pravá komora; 9-nižší vena cava; 10-sestupná aorta; 11. aortální oblouk; 12-levá plicní tepna; 13-levá plicní žíla; 14-levé atrium; 15-aortální ventil; 16-mitrální ventil; 17-levá komora; 18-interventrikulární přepážka.

Struktura a funkce oběhového systému

Krevní oběh celého těla, jak centrální (srdce a plíce), tak i periferní (zbytek těla) tvoří kompletní uzavřený systém, rozdělený do dvou okruhů. První okruh pohání krev ze srdce a nazývá se arteriální oběhový systém, druhý okruh vrací krev do srdce a nazývá se venózní oběhový systém. Krev vracející se z periferie do srdce zpočátku dosahuje pravé síně přes horní a dolní dutou žílu. Z pravé síně proudí krev do pravé komory a přes plicní tepnu jde do plic. Po výměně kyslíku v plicích s oxidem uhličitým se krev vrátí do srdce přes plicní žíly, nejprve spadne do levé síně, pak do levé komory a pak pouze do systému zásobování tepnou.

Struktura lidského oběhového systému: 1-superior vena cava; 2-cévy, které jdou do plic; 3-aorta; 4-nižší vena cava; 5-jaterní žíla; 6-portální žíla; 7-plicní žíly; 8-superior vena cava; 9-nižší vena cava; 10-plavidel vnitřních orgánů; 11-cévy končetin; 12 plavidel hlavy; 13-plicní tepna; 14. srdce.

I-malý oběh; II-velký kruh krevního oběhu; III-plavidla plavící se do hlavy a rukou; IV-cévy jdou do vnitřních orgánů; V-plavidla jdou na nohy

Struktura a funkce lidského arteriálního systému

Funkcí tepen je transport krve, která je uvolňována srdcem při uzavírání smluv. Vzhledem k tomu, že k uvolnění dochází za poměrně vysokého tlaku, příroda poskytla tepnám silné a pružné svalové stěny. Menší tepny, zvané arterioly, jsou navrženy tak, aby kontrolovaly cirkulaci krve a působily jako cévy, kterými krev vstupuje přímo do tkáně. Arterioly mají klíčový význam pro regulaci průtoku krve v kapilárách. Jsou také chráněny elastickými svalovými stěnami, které umožňují cévám buď zakrýt jejich lumen podle potřeby, nebo jej výrazně rozšířit. To umožňuje měnit a kontrolovat krevní oběh uvnitř kapilárního systému v závislosti na potřebách specifických tkání.

Struktura lidského arteriálního systému: 1-brachiocefalický kmen; 2-subklavické tepny; 3-aortální oblouk; 4-axilární tepna; 5. vnitřní tepna hrudníku; 6-sestupná aorta; 7-vnitřní tepna hrudníku; 8 hluboká brachiální tepna; 9-paprsková vratná tepna; 10-horní epigastrická tepna; 11-sestupná aorta; 12-dolní epigastrická tepna; 13-interosseální tepny; 14-paprsková tepna; 15 ulnární tepny; 16 palmar arc; 17-zadní karpální oblouk; 18 palmarových oblouků; Tepny 19 prstů; 20-sestupná větev obálky tepny; 21-sestupná kolenní tepna; 22-vyšší kolenní tepny; 23 tepen dolních kolen; 24 peronální tepna; 25 zadní tibiální arterie; 26-tibiální tepna; 27 peronální tepna; 28 oblouk arteriální nohy; 29-metatarzální tepna; 30 přední mozková tepna; 31 střední mozková tepna; 32 zadní mozková tepna; 33 bazilární tepna; 34-externí karotidová tepna; 35-vnitřní karotická tepna; 36 vertebrálních tepen; 37 společných karotických tepen; 38 plicní žíly; 39-srdce; 40 tepen; 41 celiak; 42 žaludečních tepen; 43-splenická tepna; 44-jaterní tepna; Mezenterická tepna o 45 špičkách; 46-renální tepna; Mezenterická tepna 47-inferior; 48 vnitřní semenná tepna; 49-obyčejná iliakální tepna; 50. vnitřní iliakální tepna; 51-vnější iliakální tepna; 52 tepen obálky; 53-společná femorální tepna; 54 pronikavých větví; 55. hluboká femorální tepna; 56-povrchová femorální tepna; 57-popliteální tepna; 58-hřbetní metatarzální tepny; 59-hřbetní tepny prstů.

Struktura a funkce lidského žilního systému

Účelem žilek a žil je vrátit krev do srdce. Z drobných kapilár se krev dostává do malých žilek a odtud do větších žil. Protože tlak v žilním systému je mnohem nižší než v arteriálním systému, stěny cév jsou zde mnohem tenčí. Stěny žil jsou však také obklopeny elastickou svalovou tkání, která jim, analogicky s tepnami, umožňuje buď úzké zúžení, úplné blokování lumenu, nebo značnou expanzi, působící v takovém případě jako rezervoár pro krev. Charakteristickým znakem některých žil, například v dolních končetinách, je přítomnost jednosměrných ventilů, jejichž úkolem je zajistit normální návrat krve do srdce, čímž se zabrání jejímu proudění pod vlivem gravitace, když je tělo ve vzpřímené poloze.

Struktura lidského žilního systému: 1-subclavická žíla; 2-vnitřní hrudní žíly; 3-axilární žíly; 4-laterální žíla paže; 5-brachiální žíly; 6-interkonstální žíly; 7. mediální žíla paže; 8 střední ulnární žíla; 9-hrudní žíla; 10-laterální žíla paže; 11 kubických žil; 12-mediální žíla předloktí; 13 dolní komorová žíla; 14 hluboký palarový oblouk; 15-palmový oblouk; 16 žil palmatového prstu; 17 sigmoidní sinus; 18-vnější jugulární žíla; 19 vnitřní jugulární žíla; 20. dolní žláza štítné žlázy; 21 plicních tepen; 22-srdce; 23 nižší vena cava; 24 jaterních žil; 25-renální žíly; 26-ventrální vena cava; 27-semenná žíla; 28 společná ilická žíla; 29 pronikavých větví; 30-vnější iliakální žílu; 31 vnitřní iliakální žíla; 32-vnější genitální žíla; 33-hluboká stehenní žíla; 34-žíly na nohou; 35. femorální žíla; 36-plus nožní žíly; 37 horních kolenních žil; 38 popliteální žíla; 39 dolních kolenních žil; 40-velká žíly na nohou; 41-nožní žíla; 42-přední / zadní tibiální žíla; 43 hluboká plantární žíla; 44-zadní venózní oblouk; 45-hřbetní metakarpální žíly.

Struktura a funkce systému malých kapilár

Funkcí kapilár je realizovat výměnu kyslíku, tekutin, různých živin, elektrolytů, hormonů a dalších životně důležitých složek mezi krví a tělními tkáněmi. Dodávání živin do tkání je způsobeno tím, že stěny těchto nádob mají velmi malou tloušťku. Tenké stěny umožňují, aby živiny pronikly do tkání a poskytly jim všechny potřebné složky.

Struktura mikrocirkulačních nádob: 1-tepna; 2 arteriol; 3-žíly; 4-žilky; 5 kapilár; 6-buněčná tkáň

Práce oběhového systému

Pohyb krve v těle závisí na kapacitě cév, přesněji na jejich odporu. Čím nižší je tento odpor, tím silnější je průtok krve, zatímco čím vyšší je odpor, tím slabší je průtok krve. Odolnost sama o sobě závisí na velikosti lumenu krevních cév arteriálního oběhového systému. Celková rezistence všech cév oběhového systému se nazývá celková periferní rezistence. Pokud se v těle v krátkém časovém úseku sníží lumen cév, celkový periferní odpor se zvýší as expanzí lumen cév se sníží.

K expanzi i kontrakci cév celého oběhového systému dochází pod vlivem mnoha různých faktorů, jako je intenzita tréninku, úroveň stimulace nervové soustavy, aktivita metabolických procesů ve specifických svalových skupinách, průběh procesů výměny tepla s vnějším prostředím a nejen. Při tréninku vede stimulace nervové soustavy k dilataci krevních cév a zvýšení průtoku krve. Nejvýraznějším zvýšením krevního oběhu ve svalech je současně především tok metabolických a elektrolytických reakcí ve svalové tkáni pod vlivem aerobního i anaerobního cvičení. To zahrnuje zvýšení tělesné teploty a zvýšení koncentrace oxidu uhličitého. Všechny tyto faktory přispívají k expanzi cév.

Současně klesá průtok krve v jiných orgánech a částech těla, které nejsou zapojeny do výkonu fyzické aktivity v důsledku snížení arteriol. Tento faktor spolu se zúžení velkých cév žilní oběhové soustavy přispívá ke zvýšení krevního objemu, který se podílí na prokrvení svalů zapojených do práce. Stejný efekt je pozorován při provádění zátěží s malou hmotností, ale s velkým počtem opakování. Reakci těla v tomto případě lze přirovnat k aerobnímu cvičení. Současně, při provádění silových prací s velkými váhami se zvyšuje odolnost proti průtoku krve v pracovních svalech.

Závěr

Zvažovali jsme strukturu a funkci lidského oběhového systému. Jak je nám nyní jasné, je nezbytné, aby se krev skrze srdce čerpala. Arteriální systém pohání krev ze srdce, venózní systém vrátí krev zpět. Pokud jde o fyzickou aktivitu, můžete shrnout následovně. Průtok krve v oběhovém systému závisí na stupni rezistence cév. Když rezistence cév klesá, zvyšuje se průtok krve a se zvyšujícím se odporem klesá. Snížení nebo expanze krevních cév, které určují stupeň rezistence, závisí na faktorech, jako je typ cvičení, reakce nervového systému a průběh metabolických procesů.

Kardiovaskulární systém lidského těla: strukturní rysy a funkce

Kardiovaskulární systém člověka je tak složitý, že pouze schematický popis funkčních vlastností všech jeho složek je tématem několika vědeckých prací. Tento materiál nabízí stručnou informaci o struktuře a funkcích lidského srdce, dává příležitost získat obecnou představu o tom, jak je toto tělo nepostradatelné.

Fyziologie a anatomie lidského kardiovaskulárního systému

Anatomicky se lidský kardiovaskulární systém skládá ze srdce, tepen, kapilár, žil a plní tři hlavní funkce:

  • transport živin, plynů, hormonů a metabolických produktů do buněk az buněk;
  • regulace tělesné teploty;
  • ochranu proti napadajícím mikroorganismům a cizím buňkám.

Tyto funkce lidského kardiovaskulárního systému jsou prováděny přímo tekutinami cirkulujícími v systému - krví a lymfou. (Lymfa je čistá, vodná kapalina obsahující bílé krvinky a umístěná v lymfatických cévách.)

Fyziologii lidského kardiovaskulárního systému tvoří dvě příbuzné struktury:

  • První struktura lidského kardiovaskulárního systému zahrnuje: srdce, tepny, kapiláry a žíly, které poskytují uzavřený oběh krve.
  • Druhou strukturu kardiovaskulárního systému tvoří: síť kapilár a kanálků, proudících do žilního systému.

Struktura, práce a funkce lidského srdce

Srdce je svalový orgán, který vstřikuje krev systémem dutin (komor) a ventilů do distribuční sítě, nazývané oběhový systém.

Příspěvek o struktuře a práci srdce by měl být s definicí jeho umístění. U lidí se srdce nachází v blízkosti středu hrudní dutiny. Skládá se převážně z trvanlivé elastické tkáně - srdečního svalu (myokardu), který se rytmicky snižuje po celý život, posílá krev tepnami a kapilárami do tkání těla. Když už mluvíme o struktuře a funkcích lidského kardiovaskulárního systému, stojí za zmínku, že hlavním ukazatelem práce srdce je množství krve, které musí pumpovat za 1 minutu. Při každé kontrakci srdce hází asi 60-75 ml krve a za minutu (s průměrnou frekvencí kontrakcí 70 za minutu) - 4 - 5 litrů, tj. 300 litrů za hodinu, 7200 litrů denně.

Kromě toho, že práce srdce a krevního oběhu podporuje stabilní, normální průtok krve, tento orgán se rychle přizpůsobuje a přizpůsobuje neustále se měnícím potřebám těla. Například, ve stavu aktivity, srdce pumpuje více krve a méně - ve stavu odpočinku. Když je dospělý v klidu, srdce činí 60 až 80 úderů za minutu.

Během cvičení, v době stresu nebo vzrušení, může rytmus a tepová frekvence zvýšit až na 200 úderů za minutu. Bez systému lidských oběhových orgánů je fungování organismu nemožné a srdce jako „motor“ je životně důležitým orgánem.

Když zastavíte nebo náhle oslabíte rytmus srdečních kontrakcí, dojde k úmrtí během několika minut.

Kardiovaskulární systém lidských oběhových orgánů: z čeho se skládá srdce

Co se tedy skládá z srdce a co je srdeční tep?

Struktura lidského srdce obsahuje několik struktur: stěny, příčky, ventily, vodivý systém a systém zásobování krví. Dělí se přepážkami na čtyři komory, které nejsou naplněny krví. Dvě nižší tlusté komory ve struktuře kardiovaskulárního systému člověka - komory - hrají roli injekčního čerpadla. Dostávají krev z horních komor a jsou redukovány do tepen. Kontrakce atria a komor vytvářejí to, co se nazývá srdeční tep.

Kontrakce levé a pravé předsíně

Dvě horní komory jsou atria. Jedná se o tenkostěnné tanky, které se snadno napínají a jsou schopny pojmout krev proudící ze žil v intervalech mezi kontrakcemi. Stěny a příčky tvoří svalovou základnu čtyř komor srdce. Svaly komor jsou umístěny tak, že když se stahují, krev je doslova vyhozena ze srdce. Proudění žilní krve vstupuje do pravé srdeční síně, prochází tříkuspidální chlopní do pravé komory, odkud vstupuje do plicní tepny, prochází semilunárními chlopněmi a pak do plic. Pravá strana srdce tak dostává krev z těla a pumpuje ji do plic.

Krev v kardiovaskulárním systému lidského těla, která se vrací z plic, vstupuje do levé srdeční síně, prochází bicuspidálním nebo mitrálním ventilem a vstupuje do levé komory, ze které jsou aortální semilunární chlopně zasunuty do stěny. Levá strana srdce tak dostává krev z plic a pumpuje ji do těla.

Lidský kardiovaskulární systém zahrnuje chlopně srdce a plicního trupu

Ventily jsou záhyby pojivové tkáně, které umožňují průtok krve pouze jedním směrem. Čtyři srdeční chlopně (trikuspidální, plicní, bicuspidální nebo mitrální a aortální) plní úlohu „dveří“ mezi komorami, které se otevírají v jednom směru. Práce srdečních chlopní přispívá k rozvoji krve vpřed a brání jejímu pohybu v opačném směru. Trikuspidální ventil je umístěn mezi pravou síní a pravou komorou. Samotný název tohoto ventilu v anatomii lidského kardiovaskulárního systému hovoří o jeho struktuře. Když se tento lidský srdeční ventil otevře, krev přechází z pravé síně do pravé komory. Zabraňuje zpětnému proudění krve do atria, uzavírá se při komorové kontrakci. Když je trikuspidální ventil uzavřen, krev v pravé komoře najde přístup pouze k plicnímu trupu.

Plicní trup se dělí na levé a pravé plicní tepny, které jdou vždy doleva a doprava. Vstup do plicního trupu uzavírá plicní ventil. Tento orgán lidského kardiovaskulárního systému se skládá ze tří ventilů, které jsou otevřené, když je pravá srdeční komora redukována a uzavřena v době jejího uvolnění. Anatomické a fyziologické vlastnosti lidského kardiovaskulárního systému jsou takové, že plicní ventil umožňuje proudění krve z pravé komory do plicních tepen, ale zabraňuje zpětnému proudění krve z plicních tepen do pravé komory.

Funkce bicuspidální srdeční chlopně při redukci atria a komor

Bicuspidální nebo mitrální ventil reguluje průtok krve z levé síně do levé komory. Stejně jako trikuspidální chlopně se uzavírá v době kontrakce levé komory. Aortální chlopně se skládá ze tří listů a zavírá vstup do aorty. Tento ventil přenáší krev z levé komory v době její kontrakce a zabraňuje zpětnému proudění krve z aorty do levé komory v době relaxace. Zdravé okvětní lístky jsou tenká, pružná tkanina dokonalého tvaru. Otvírají se a zavírají se, když se srdce stahuje nebo uvolňuje.

V případě defektu (defektu) ventilů, který vede k neúplnému uzavření, dochází k opačnému proudění určitého množství krve přes poškozený ventil s každou svalovou kontrakcí. Tyto vady mohou být buď vrozené nebo získané. Nejcitlivější na mitrální chlopně.

Levá a pravá část srdce (sestávající z atria a každé komory) jsou od sebe izolovány. Pravá část přijímá kyslík-chudé krev tekoucí z tkání těla, a pošle ji do plic. Levá část přijímá okysličenou krev z plic a směřuje ji do tkání celého těla.

Levá komora je mnohem silnější a masivnější než jiné srdeční komory, protože provádí nejtěžší práci - krev je čerpána do velké cirkulace: její stěny jsou obvykle o něco menší než 1,5 cm.

Srdce je obklopeno perikardiálním vakem (perikardem) obsahujícím perikardiální tekutinu. Tato taška umožňuje, aby se srdce volně stahovalo a rozšiřovalo. Perikard je silný, sestává z pojivové tkáně a má dvouvrstvou strukturu. Perikardiální tekutina je obsažena mezi vrstvami perikardu a působí jako lubrikant, který jim umožňuje volně klouzat po sobě, jak se srdce rozpíná a stahuje.

Cyklus prezenčního signálu: fáze, rytmus a frekvence

Srdce má přesně definovanou sekvenci kontrakce (systoly) a relaxace (diastole), nazývané srdeční cyklus. Protože délka systoly a diastoly je stejná, srdce je v uvolněném stavu po dobu poloviny cyklu.

Srdeční aktivita se řídí třemi faktory:

  • srdce je vlastní schopnosti spontánních rytmických kontrakcí (tzv. automatismus);
  • srdeční frekvence je určena především autonomním nervovým systémem inervujícím srdce;
  • harmonická kontrakce atrií a komor je koordinována vodivým systémem složeným z mnoha nervových a svalových vláken a umístěných ve stěnách srdce.

Plnění funkcí „sbírání“ a čerpání krve srdcem závisí na rytmu pohybu malých impulzů přicházejících z horní komory srdce do nižší. Tyto impulsy se šíří systémem srdečního vedení, který nastavuje požadovanou frekvenci, rovnoměrnost a synchronizaci síňových a komorových kontrakcí v souladu s potřebami těla.

Sekvence kontrakcí srdečních komor se nazývá srdeční cyklus. Během cyklu každá ze čtyř komor prochází takovou fází srdečního cyklu jako kontrakce (systola) a relaxační fáze (diastole).

První z nich je kontrakce atria: první vpravo, téměř okamžitě za ním vlevo. Tyto řezy umožňují rychlé naplnění uvolněných komor krví. Pak se komory uzavřou a vytlačují krev, která je v nich obsažena. V této době se síň uvolní a naplní krví ze žil.

Jedním z nejcharakterističtějších rysů lidského kardiovaskulárního systému je schopnost srdce provádět pravidelné spontánní kontrakce, které nevyžadují vnější spoušťový mechanismus, jako je nervová stimulace.

Srdeční sval je poháněn elektrickými impulsy vznikajícími v samotném srdci. Jejich zdrojem je malá skupina specifických svalových buněk ve stěně pravé síně. Oni tvoří povrchovou strukturu přibližně 15 mm dlouhý, který je nazýván sinoatrial, nebo sinus, uzel. Nejenže iniciuje srdeční tep, ale také určuje jejich počáteční frekvenci, která zůstává konstantní v nepřítomnosti chemických nebo nervových vlivů. Tato anatomická formace řídí a reguluje srdeční rytmus v souladu s aktivitou organismu, denní dobou a mnoha dalšími faktory ovlivňujícími člověka. V přirozeném stavu rytmu srdce vznikají elektrické impulsy, které procházejí síní, což je způsobuje kontrakci, do atrioventrikulárního uzlu umístěného na hranici mezi síní a komorami.

Pak se excitace přes vodivé tkáně šíří v komorách, což způsobuje, že se stahují. Poté srdce spočívá až do dalšího impulsu, od kterého začíná nový cyklus. Impulzy vznikající v kardiostimulátoru se zvlně šíří podél svalových stěn obou síní, což je způsobuje téměř současně. Tyto impulsy se mohou šířit pouze ve svalech. Proto je v centrální části srdce mezi síní a komorami svalový svazek, tzv. Atrioventrikulární vodivostní systém. Jeho počáteční část, která přijímá puls, se nazývá AV-uzel. Podle ní se impulz šíří velmi pomalu, takže mezi výskytem impulsu v sinusovém uzlu a jeho šířením skrze komory trvá asi 0,2 sekundy. Je to toto zpoždění, které umožňuje, aby krev proudila z předsíní do komor, zatímco druhá zůstala ještě uvolněná. Z AV uzlu se impulz rychle šíří po vodivých vláknech tvořících tzv. Jeho svazek.

Správnost srdce, jeho rytmus lze kontrolovat vložením ruky na srdce nebo měřením pulsu.

Výkon srdce: srdeční frekvence a síla

Regulace tepové frekvence. Srdce dospělého se obvykle zmenší o 60–90 krát za minutu. U dětí je frekvence a síla kontrakcí srdce vyšší: u kojenců, asi 120, au dětí do 12 let - 100 úderů za minutu. Jedná se pouze o průměrné ukazatele práce srdce a v závislosti na podmínkách (například na fyzickém nebo emocionálním stresu atd.) Se cyklus srdečních tepů může velmi rychle změnit.

Srdce je hojně zásobováno nervy, které regulují frekvenci jeho kontrakcí. Regulace tepů se silnými emocemi, jako je vzrušení nebo strach, je posílena, protože se zvyšuje tok impulzů z mozku do srdce.

Důležitá role ve hře na srdce a fyziologické změny.

Zvýšení koncentrace oxidu uhličitého v krvi spolu se snížením obsahu kyslíku způsobí silnou stimulaci srdce.

Přetečení krve (silné protažení) některých částí cévního lůžka má opačný účinek, což vede k pomalejšímu tepu. Fyzická aktivita také zvyšuje tepovou frekvenci až na 200 za minutu nebo více. Řada faktorů ovlivňuje práci srdce přímo, bez účasti nervového systému. Například zvýšení tělesné teploty urychluje srdeční frekvenci a pokles ji zpomaluje.

Některé hormony, jako je adrenalin a tyroxin, mají také přímý účinek a při vstupu do srdce krví zvyšují tepovou frekvenci. Regulace síly a srdeční frekvence je velmi složitý proces, ve kterém dochází k interakci mnoha faktorů. Některé ovlivňují srdce přímo, jiné působí nepřímo prostřednictvím různých úrovní centrální nervové soustavy. Mozek tyto účinky koordinuje na práci srdce s funkčním stavem zbytku systému.

Práce srdce a kruhů krevního oběhu

Lidský oběhový systém, kromě srdce, zahrnuje různé krevní cévy:

  • Nádoby jsou systémem dutých elastických trubek různých konstrukcí, průměrů a mechanických vlastností naplněných krví. V závislosti na směru pohybu krve, jsou cévy rozděleny do tepen, skrze které je krev odčerpána ze srdce a jde do orgánů, a žíly jsou cévy, ve kterých krev proudí směrem k srdci.
  • Mezi tepnami a žíly je mikrocirkulační lůžko, které tvoří periferní část kardiovaskulárního systému. Mikrocirkulační lůžko je systém malých cév, včetně arteriol, kapilár, venul.
  • Arterioly a žilky jsou malé větve tepen a žil. Blížící se srdce se žíly opět spojují a tvoří větší plavidla. Tepny mají velký průměr a tlusté elastické stěny, které vydrží velmi vysoký krevní tlak. Na rozdíl od tepen mají žíly tenčí stěny, které obsahují méně svalové a elastické tkáně.
  • Kapiláry jsou nejmenší krevní cévy, které spojují arterioly s venulami. Díky velmi tenké stěně kapilár se mezi krví a buňkami různých tkání vyměňují živiny a další látky (jako kyslík a oxid uhličitý). V závislosti na potřebě kyslíku a dalších živin mají různé tkáně různý počet kapilár.

Tkáně, jako jsou svaly, spotřebovávají velké množství kyslíku, a proto mají hustou síť kapilár. Na druhé straně, tkáně s pomalým metabolismem (jako je epidermis a rohovka) vůbec neobsahují kapiláry. Člověk a všichni obratlovci mají uzavřený oběhový systém.

Kardiovaskulární systém člověka tvoří dva kruhy krevního oběhu spojené v sérii: velké a malé.

Velký kruh krevního oběhu dodává krev do všech orgánů a tkání. Začíná v levé komoře, odkud pochází aorta a končí v pravém atriu, do kterého proudí duté žíly.

Plicní oběh je omezen cirkulací krve v plicích, krev je obohacena kyslíkem a oxid uhličitý je odstraněn. Začíná pravou komorou, ze které se vynořuje plicní kmen, a končí levým atriem, do kterého spadají plicní žíly.

Těla kardiovaskulárního systému člověka a krevní zásobení srdce

Srdce má také vlastní zásobu krve: speciální aortální větve (koronární tepny) ji dodávají okysličenou krví.

Ačkoli obrovské množství krve prochází komorami srdce, srdce samo o sobě z ní nevytěží nic pro vlastní výživu. Potřeby srdce a krevního oběhu zajišťují koronární tepny, což je speciální systém cév, kterým srdeční sval dostává přímo přibližně 10% veškeré krevní pumpy.

Stav koronárních tepen má zásadní význam pro normální fungování srdce a jeho zásobování krví: často se u nich rozvine postupné zúžení (stenóza), které při přetěžování způsobuje bolest na hrudi a vede k infarktu.

Dvě koronární tepny, každá s průměrem 0,3 až 0,6 cm, jsou první větve aorty, které se rozprostírají od ní přibližně 1 cm nad aortální chlopní.

Levá koronární tepna se téměř okamžitě rozdělí na dvě velké větve, z nichž jedna (přední sestupná větev) prochází podél předního povrchu srdce k vrcholu.

Druhá větev (obálka) je umístěna v drážce mezi levým atriem a levou komorou. Spolu s pravou koronární tepnou ležící v drážce mezi pravou síní a pravou komorou se ohýbá kolem srdce jako koruna. Proto jméno - "koronární".

Od velkých koronárních cév lidského kardiovaskulárního systému se menší větve rozbíhají a pronikají do tloušťky srdečního svalu, dodávají jí živiny a kyslík.

Se vzrůstajícím tlakem v koronárních tepnách a zvýšením práce srdce dochází ke zvýšení průtoku krve v koronárních tepnách. Nedostatek kyslíku také vede k prudkému zvýšení koronárního průtoku krve.

Krevní tlak je udržován rytmickými stahy srdce, který hraje roli čerpadla, které pumpuje krev do cév velkého oběhu. Stěny některých cév (tzv. Rezistentní cévy - arterioly a prepillaries) jsou opatřeny svalovými strukturami, které se mohou stahovat, a tudíž zúžit průchod cévy. To vytváří odolnost proti průtoku krve v tkáni a hromadí se v celkovém krevním řečišti, což zvyšuje systémový tlak.

Úloha srdce při tvorbě krevního tlaku je tedy určena množstvím krve, které hodí do krevního oběhu za jednotku času. Toto číslo je definováno termínem "srdeční výdej" nebo "minutový objem srdce". Úloha odporových cév je definována jako celková periferní rezistence, která závisí hlavně na poloměru lumen cév (jmenovitě arteriol), tj. Na stupni jejich zúžení, stejně jako na délce cév a viskozitě krve.

Jak se množství krve emitované srdcem do krevního oběhu zvyšuje, tlak se zvyšuje. Pro udržení adekvátní úrovně krevního tlaku se hladké svaly odporových cév uvolňují, jejich lumen se zvyšuje (tj. Snižuje se jejich celková periferní rezistence), krev proudí do periferních tkání a systémový krevní tlak se snižuje. Naopak se zvýšením celkové periferní rezistence klesá minutový objem.