Hlavní

Hypertenze

Lidský srdeční sval

Navzdory skutečnosti, že srdce je pouze poloviční z celkové tělesné hmotnosti, je to nejdůležitější orgán lidského těla. Je to normální funkce srdečního svalu, která umožňuje plný provoz všech orgánů a systémů. Komplexní struktura srdce je nejlépe přizpůsobena pro distribuci arteriálních a venózních krevních toků. Z hlediska medicíny se jedná o onemocnění srdce, které zaujímá první místo mezi lidskými chorobami.

Srdce se nachází v hrudní dutině. Před ním je hrudní kost. Orgán je posunut mírně doleva ve vztahu k hrudní kosti. Nachází se na úrovni šestého a osmého hrudního obratle.

Ze všech stran je srdce obklopeno speciální serózní membránou. Tato membrána se nazývá perikard. Tvoří svou vlastní dutinu zvanou perikardiální. Být v této dutině usnadňuje tělu sklouznutí proti jiným tkáním a orgánům.

Z hlediska radiologických kritérií jsou rozlišovány následující varianty polohy srdečního svalu:

  • Nejběžnější - šikmé.
  • Jako kdyby byl přerušen, s posunutím levého okraje do středové čáry - svisle.
  • Rozložte na podkladovou membránu - vodorovně.

Varianty polohy srdečního svalu závisí na morfologickém uspořádání člověka. V astenickém je vertikální. V normostenic, srdce je šikmé, av hypersthenic to je vodorovné.

Srdeční sval má kuželový tvar. Základna orgánu se rozpíná a táhne dozadu a nahoru. Hlavní cévy zapadají do základny orgánu. Struktura a funkce srdce - jsou neoddělitelně spojeny.

Následující povrchy jsou izolovány od srdečního svalu:

  • přední sternum;
  • dno, otočené k membráně;
  • laterálně směřující k plicím.

Srdeční sval zviditelňuje drážky, což odráží polohu jeho vnitřních dutin:

  • Coronoid sulcus. Nachází se na základně srdečního svalu a nachází se na okraji komor a atria.
  • Mezikomorové brázdy. Běží podél předního a zadního povrchu orgánu, podél hranice mezi komorami.

Lidský srdeční sval má čtyři komory. Příčná přepážka jej dělí na dvě dutiny. Každá dutina je rozdělena do dvou komor.

Jedna komora je síňová a druhá komorová. Žilní krev cirkuluje na levé straně srdečního svalu a na pravé straně cirkuluje arteriální krev.

Pravá síň je svalová dutina, ve které je otevřena horní a dolní dutá žíla. V horní části atria je výčnělek - oko. Vnitřní stěny atria jsou hladké, s výjimkou povrchu výstupku. V oblasti příčné přepážky, která odděluje dutinu síní od komory, je zde oválná fossa. Je zcela uzavřený. V prenatálním období bylo na místě otevřeno okno, přes které byla míchána žilní a tepnová krev. V dolní části pravé síně je atrioventrikulární otvor, kterým prochází žilní krev z pravé síně do pravé komory.

Krev vstupuje do pravé komory z pravé síně v době její kontrakce a relaxace komory. V době kontrakce levé komory se krev dostává do plicního trupu.

Atrioventrikulární otevření je blokováno ventilem stejného jména. Tento ventil má také další název - trikuspidální. Tři ventily ventilu jsou záhyby vnitřního povrchu komory. Na chlopně jsou připevněny speciální svaly, které zabraňují tomu, aby se v době komorové kontrakce změnily v dutinu síní. Na vnitřním povrchu komory je velké množství příčných svalových kolejnic.

Díra plicního trupu je blokována speciálním semilunárním ventilem. Když se zavře, zabraňuje zpětnému toku krve z plicního trupu, když se komory uvolní.

Krev v levé síni vstupuje do čtyř plicních žil. Má vyboulení - očko. Svaly hrotu jsou dobře vyvinuté v uchu. Krev z levé síně vstupuje do levé komory komorovým otvorem levé síně.

Levá komora má tlustší stěny než pravá. Na vnitřním povrchu komory jsou dobře viditelné dobře vyvinuté svalové příčníky a dvě papilární svaly. Tyto svaly s elastickými šlachovými vlákny jsou připojeny k dvoukřídlému levému atrioventrikulárnímu ventilu. Zabraňují převrácení lístků ventilů do dutiny levé síně v době kontrakce levé komory.

Aorta pochází z levé komory. Aorta je pokryta trikuspidálním semilunárním ventilem. Ventily zabraňují návratu krve z aorty do levé komory v době jejího uvolnění.

Ve vztahu k jiným orgánům je srdce v určité poloze pomocí následujících fixačních forem:

  • velké krevní cévy;
  • agregace prstencové vláknité tkáně;
  • vláknité trojúhelníky.

Stěna srdečního svalu se skládá ze tří vrstev: vnitřní, střední a vnější:

  1. 1. Vnitřní vrstva (endokard) se skládá z desky pojivové tkáně a pokrývá celý vnitřní povrch srdce. Šlachy šlachy a filamenty upevněné na endokardu tvoří srdeční chlopně. Pod endokardem je další bazální membrána.
  2. 2. Střední vrstva (myokard) se skládá z pruhovaných svalových vláken. Každé svalové vlákno je svazek buněk - kardiomyocytů. Vizuálně jsou mezi vlákny viditelné tmavé pruhy, což jsou vložky, které hrají důležitou roli v přenosu elektrické excitace mezi kardiomyocyty. Venku jsou svalová vlákna obklopena pojivovou tkání, která obsahuje nervy a krevní cévy, které poskytují trofickou funkci.
  3. 3. Vnější vrstva (epikard) je serózní list hustě fúzovaný s myokardem.

V srdečním svalu je speciální systém vedení orgánů. Podílí se na přímé regulaci rytmických stahů svalových vláken a mezibuněčné koordinace. Buňky srdečního svalového systému, myocyty, mají speciální strukturu a bohatou inervaci.

Vodivý systém srdce se skládá ze skupiny uzlů a svazků organizovaných zvláštním způsobem. Tento systém je lokalizován pod endokardem. V pravé síni je sinusový uzel, který je hlavním generátorem srdečního vzrušení.

Interatriální svazek, který se podílí na simultánním kontrakci síní, odchází z tohoto uzlu. Také tři svazky vodivých vláken do atrioventrikulárního uzlu umístěného v oblasti koronárního sulku se rozprostírají od sinusového síňového uzlu. Velké větve vodivého systému se rozpadají na menší a pak na nejmenší, tvořící jedinou vodivou síť srdce.

Tento systém zajišťuje současnou práci myokardu a koordinovanou práci všech oddělení těla.

Perikard je skořápka, která tvoří srdce kolem srdce. Tato membrána spolehlivě odděluje srdeční sval od jiných orgánů. Perikard se skládá ze dvou vrstev. Hustý vláknitý a tenký serózní.

Serózní vrstva se skládá ze dvou listů. Mezi listy je vytvořen prostor naplněný serózní kapalinou. Tato okolnost umožňuje, aby se srdeční sval během stahů pohodlně posouval.

Automatizace je hlavní funkční kvalita srdečního svalu zmenšena pod vlivem impulzů, které jsou v něm generovány. Automatismus srdečních buněk přímo souvisí s vlastnostmi membrány kardiomyocytů. Buněčná membrána je semipermeabilní pro sodné a draselné ionty, které na svém povrchu tvoří elektrický potenciál. Rychlý pohyb iontů vytváří podmínky pro zvýšení excitability srdečního svalu. Když je dosaženo elektrochemické rovnováhy, srdeční sval není excitovatelný.

Dodávka energie myokardu nastává v důsledku tvorby svalových vláken energetických substrátů ATP a ADP v mitochondriích. Pro plnou operaci myokardu je nezbytné adekvátní zásobování krví, které je zajištěno koronárními tepnami vyčnívajícími z aortálního oblouku. Aktivita srdečního svalu je přímo úměrná práci centrálního nervového systému a systému srdečních reflexů. Reflexy hrají regulační úlohu a zajišťují optimální fungování srdce v neustále se měnících podmínkách.

Vlastnosti nervové regulace:

  • adaptivní a spouštěcí účinek na práci srdečního svalu;
  • vyvažování metabolických procesů v srdečním svalu;
  • humorální regulace orgánové aktivity.

Funkce srdce jsou následující:

  • Schopen vyvíjet tlak na krevní oběh a okysličovat orgány a tkáně.
  • Může odstranit z těla oxid uhličitý a odpadní produkty.
  • Každý kardiomyocyt může být excitován impulsy.
  • Srdeční sval je schopen provádět impuls mezi kardiomyocyty prostřednictvím speciálního systému vedení.
  • Po vzrušení je srdeční sval schopen kontrakce v síních nebo komorách, čerpá krev.

Srdce je jedním z nejdokonalejších orgánů lidského těla. Má řadu úžasných vlastností: sílu, neúnavnost a schopnost přizpůsobit se neustále se měnícím podmínkám prostředí. Díky práci srdce, kyslíku a živin vstupují do všech tkání a orgánů. To zajišťuje nepřetržitý průtok krve v těle. Lidské tělo je komplexní a koordinovaný systém, kde je hlavní hnací silou srdce.

Vlastnosti srdečního svalu a jeho onemocnění

Srdeční sval (myokard) ve struktuře lidského srdce se nachází ve střední vrstvě mezi endokardem a epikardem. To je ten, který zajišťuje nepřerušovanou práci na "destilaci" okysličené krve ve všech orgánech a systémech těla.

Jakákoli slabost ovlivňuje průtok krve, vyžaduje kompenzační úpravu, harmonické fungování systému zásobování krví. Nedostatečná přizpůsobivost způsobuje kritický pokles účinnosti srdečního svalu a jeho onemocnění.
Vytrvalost myokardu je zajištěna jeho anatomickou strukturou a schopnostmi.

Konstrukční prvky

To je přijato velikostí srdeční stěny posuzovat vývoj svalové vrstvy, protože epikard a endokard jsou obvykle velmi tenké skořápky. Dítě se narodí se stejnou tloušťkou pravé a levé komory (asi 5 mm). V adolescenci se levá komora zvyšuje o 10 mm a pravá o 1 mm.

U dospělé zdravé osoby v relaxační fázi se tloušťka levé komory pohybuje od 11 do 15 mm, pravá - 5–6 mm.

Funkce svalové tkáně jsou:

  • pruhované rýhování tvořené myofibrily kardiomyocytových buněk;
  • přítomnost vláken dvou typů: tenkých (aktinických) a tlustých (myosin), spojených příčnými mosty;
  • složené myofibrily ve svazcích různých délek a směrovosti, což umožňuje vybrat tři vrstvy (povrch, vnitřní a střední).

Morfologické znaky struktury poskytují komplexní mechanismus kontrakce srdce.

Jak se srdce dohodne?

Kontraktilita je jednou z vlastností myokardu, která spočívá ve vytváření rytmických pohybů předsíní a komor, umožňujících čerpání krve do cév. Komory srdce neustále procházejí dvěma fázemi:

  • Systole - způsobená kombinací aktinu a myosinu pod vlivem energie ATP a uvolňováním iontů draslíku z buněk, zatímco tenká vlákna se posouvají podél sil a svazky se snižují na délku. Dokázala možnost vlnových pohybů.
  • Diastole - dochází k relaxaci a separaci aktinu a myosinu, obnově vynaložené energie díky syntéze enzymů, hormonů, vitamínů získaných „mosty“.

Bylo zjištěno, že síla kontrakce je zajištěna vápníkem uvnitř myocytů.

Celý cyklus kontrakce srdce, včetně systoly, diastoly a obecné pauzy za nimi, s normálním rytmem do 0,8 sekundy. Začíná systolickou síní, krev je naplněna komorami. Pak atria "odpočinek", pohybující se do fáze diastoly a kontrakce komor (systola).
Počítání času „práce“ a „odpočinku“ srdečního svalu ukázalo, že stav kontrakce představuje 9 hodin a 24 minut denně a pro relaxaci - 14 hodin a 36 minut.

Sled kontrakcí, poskytování fyziologických vlastností a potřeb těla během cvičení, poruchy závisí na spojení myokardu s nervovými a endokrinními systémy, schopnost přijímat a "dekódovat" signály, aktivně se přizpůsobovat lidským životním podmínkám.

Srdeční mechanismy pro redukci

Vlastnosti srdečního svalu mají tyto cíle:

  • podpora kontrakce myofibril;
  • poskytovat správný rytmus pro optimální naplnění dutin srdce;
  • zachovat možnost vytlačení krve v extrémních podmínkách pro organismus.

K tomu má myokard následující schopnosti.

Excitabilita - schopnost myocytů reagovat na všechny příchozí patogeny. Z nadlimitních stimulací se buňky chrání stavem refraktivity (ztráta schopnosti vzrušení). V normálním cyklu kontrakce rozlišujte mezi absolutní refrakterní a relativní.

  • Během periody absolutní refrakternosti, od 200 do 300 ms, myokard nereaguje ani na supersilné podněty.
  • Když relativní - schopný reagovat pouze na dostatečně silné signály.

Vodivost - vlastnost přijímat a přenášet impulsy do různých částí srdce. Poskytuje speciální typ myocytů s procesy, které jsou velmi podobné neuronům mozku.

Automatizace - schopnost vytvořit uvnitř myokardu vlastní akční potenciál a způsobit kontrakce i ve formě izolované z organismu. Tato vlastnost umožňuje resuscitaci v nouzových případech, pro udržení krevního zásobení mozku. Hodnota lokalizované sítě buněk, jejich shluků v uzlech během transplantace dárcovského srdce je velká.

Hodnota biochemických procesů v myokardu

Životaschopnost kardiomyocytů je zajištěna dodávkou živin, kyslíkovou a energetickou syntézou ve formě adenosintrifosfátu.

Všechny biochemické reakce probíhají co nejvíc během systoly. Tyto procesy se nazývají aerobní, protože jsou možné pouze s dostatečným množstvím kyslíku. Za minutu spotřebuje levá komora každých 100 g hmoty 2 ml kyslíku.

Pro výrobu energie se používá dodaná krev:

  • glukóza,
  • kyseliny mléčné
  • ketony,
  • mastných kyselin
  • pyruvic a aminokyseliny
  • enzymy
  • Vitamíny B,
  • hormony.

V případě zvýšení srdeční frekvence (fyzické aktivity, vzrušení) se zvyšuje potřeba kyslíku o 40–50krát a významně se zvyšuje i spotřeba biochemických složek.

Jaké kompenzační mechanismy má srdeční sval?

U lidí nedochází k patologii, pokud kompenzační mechanismy fungují dobře. Neuroendokrinní systém je zapojen do regulace.

Sympatický nerv dodává signály myokardu o potřebě zvýšených kontrakcí. Toho je dosaženo intenzivnějším metabolismem, zvýšenou syntézou ATP.

K podobnému efektu dochází při zvýšené syntéze katecholaminu (adrenalin, norepinefrin). V takových případech vyžaduje zvýšená práce myokardu zvýšený přísun kyslíku.

Nervus vagus pomáhá snižovat frekvenci kontrakcí během spánku, během období odpočinku, udržovat zásobu kyslíku.

Je důležité vzít v úvahu reflexní mechanismy adaptace.

Tachykardie je způsobena stagnujícím natahováním úst dutých žil.

Reflexní zpomalení rytmu je možné s aortální stenózou. Zvýšený tlak v dutině levé komory zároveň dráždí konec nervu vagus, přispívá k bradykardii a hypotenzi.

Trvání diastoly se zvyšuje. Pro fungování srdce jsou vytvořeny příznivé podmínky. Stenóza aorty je proto považována za dobře kompenzovanou vadu. Umožňuje pacientům žít v pokročilém věku.

Jak léčit hypertrofii?

Obvykle prodloužené zvýšené zatížení způsobuje hypertrofii. Tloušťka stěny levé komory se zvyšuje o více než 15 mm. Ve formačním mechanismu je důležitým bodem zpoždění kapilárního klíčení hluboko do svalu. Ve zdravém srdci je počet kapilár na mm2 srdeční svalové tkáně asi 4000 a u hypertrofie index klesá na 2400.

Stav až do určitého bodu je proto považován za kompenzační, ale s výrazným zahuštěním stěny vede k patologii. Obvykle se vyvíjí v té části srdce, která musí tvrdě pracovat, aby tlačila krev zúženým otvorem nebo překonala překážku krevních cév.

Hypertrofovaný sval může dlouhodobě udržovat průtok krve pro srdeční vady.

Sval pravé komory je méně rozvinutý, působí proti tlaku 15-25 mm Hg. Čl. Proto kompenzace pro mitrální stenózu, plicní srdce není držena dlouho. Hypertrofie pravé komory je však velmi důležitá při akutním infarktu myokardu, srdeční aneurysma v oblasti levé komory, zmírňuje přetížení. Dokázané významné rysy správných úseků v tréninku během cvičení.

Může se srdce přizpůsobit práci v podmínkách hypoxie?

Důležitou vlastností adaptace na práci bez dostatečného přívodu kyslíku je anaerobní (bezkyslíkový) proces syntézy energie. Velmi vzácný výskyt pro lidské orgány. Je zahrnuta pouze v nouzových případech. Umožňuje srdečním svalům pokračovat v kontrakcích.
Negativní důsledky jsou akumulace produktů degradace a únava svalových fibril. Jeden srdeční cyklus nestačí k resyntéze energie.

Je však zapojen další mechanismus: tkáňová hypoxie reflexně způsobuje, že nadledvinky produkují více aldosteronu. Tento hormon:

  • zvyšuje množství cirkulující krve;
  • stimuluje zvýšení obsahu červených krvinek a hemoglobinu;
  • posiluje žilní tok do pravé síně.

To vám umožní přizpůsobit tělo a myokard nedostatku kyslíku.

Jak myokardiální patologie, mechanismy klinických projevů

Onemocnění myokardu se vyvíjejí pod vlivem různých příčin, ale vyskytují se pouze tehdy, když selhávají adaptační mechanismy.

Dlouhodobá ztráta svalové energie, nemožnost vlastní syntézy v nepřítomnosti složek (zejména kyslíku, vitamínů, glukózy, aminokyselin) vede ke ztenčování vrstvy aktomyosinu, přerušení spojení mezi myofibrily, jejich nahrazení vláknitou tkání.

Toto onemocnění se nazývá dystrofie. Je doprovázen:

  • anémie,
  • avitaminóza,
  • endokrinní poruchy
  • intoxikace.

Výsledkem je:

  • hypertenze
  • koronární ateroskleróza,
  • myokarditida.

Pacienti mají následující příznaky:

  • slabost
  • arytmie,
  • fyzické dušnosti
  • tep.

V mladém věku může být nejčastější příčinou tyreotoxikóza, diabetes mellitus. Současně nejsou žádné zjevné příznaky zvětšené štítné žlázy.

Zánětlivý proces srdečního svalu se nazývá myokarditida. To doprovází jak infekční onemocnění dětí a dospělých, tak těch, kteří nejsou spojeni s infekcí (alergické, idiopatické).

Rozvíjí se ve fokální a difúzní formě. Růst zánětlivých prvků infikuje myofibrily, přerušuje cesty, mění aktivitu uzlů a jednotlivých buněk.

V důsledku toho se u pacienta vyvíjí srdeční selhání (často pravokomorové). Klinické projevy se skládají z:

  • bolest v srdci;
  • přerušení rytmu;
  • dušnost;
  • dilatace a pulzace krčních žil.

Atrioventrikulární blokáda různých stupňů je zaznamenána na EKG.

Nejznámějším onemocněním způsobeným sníženým průtokem krve do srdečního svalu je ischémie myokardu. Proudí ve formě:

  • záchvaty anginy pectoris
  • akutní infarkt myokardu
  • chronická koronární insuficience,
  • náhlá smrt.

Všechny formy ischemie jsou doprovázeny paroxyzmální bolestí. Oni jsou obrazně nazvaný “pláč hladovící myokard.” T Průběh a výsledek onemocnění závisí na:

  • rychlost pomoci;
  • obnova krevního oběhu v důsledku zajištění;
  • schopnost svalových buněk přizpůsobit se hypoxii;
  • vznik silné jizvy.

Jak pomoci srdečnímu svalu?

Nejvíce připraveni na kritické vlivy zůstávají lidé, kteří se angažují ve sportu. Mělo by být jasně rozlišeno kardio, které nabízí fitness centra a terapeutická cvičení. Každý kardio program je určen pro zdravé lidi. Posílené fitness vám umožní způsobit střední hypertrofii levé a pravé komory. Se správným úkolem osoba sama řídí dostatečnost pulsu zátěže.

Fyzická terapie je ukázána lidem trpícím jakoukoliv nemocí. Pokud mluvíme o srdci, pak si klade za cíl:

  • zlepšení regenerace tkání po infarktu;
  • posílit vazy páteře a eliminovat možnost sevření paravertebrálních cév;
  • Imunita „podnětu“;
  • obnovit neuro-endokrinní regulaci;
  • zajistit práci pomocných plavidel.

Léčba léky je předepsána v souladu s jejich mechanismem účinku.

Pro terapii je v současné době k dispozici odpovídající arzenál nástrojů:

  • zmírnění arytmií;
  • zlepšit metabolismus v kardiomyocytech;
  • zlepšení výživy v důsledku expanze koronárních cév;
  • zvýšení rezistence na hypoxii;
  • ohromující ohniska vzrušivosti.

Je nemožné vtipkovat se svým srdcem, nedoporučuje se experimentovat na sobě. Léčivé látky může předepisovat a vybírat pouze lékař. Aby se zabránilo patologickým symptomům co nejdéle, je nutná náležitá prevence. Každý člověk může pomoci svému srdci omezením příjmu alkoholu, mastných jídel, odvykáním od kouření. Pravidelné cvičení může vyřešit mnoho problémů.

Struktura a princip srdce

Srdce je svalový orgán u lidí a zvířat, který pumpuje krev krevními cévami.

Funkce srdce - proč potřebujeme srdce?

Naše krev dodává celému tělu kyslík a živiny. Kromě toho má také čistící funkci, která pomáhá odstraňovat metabolický odpad.

Funkce srdce je pumpovat krev krevními cévami.

Kolik krve má srdeční pumpa?

Lidské srdce pumpuje asi 7 000 až 10 000 litrů krve za jeden den. To je asi 3 miliony litrů ročně. Ukazuje to až 200 milionů litrů za celý život!

Množství čerpané krve během minuty závisí na aktuální fyzické a emocionální zátěži - čím větší zátěž, tím více krve tělo potřebuje. Tak srdce může projít sám od 5 k 30 litrům za minutu.

Oběhový systém se skládá z asi 65 tisíc plavidel, jejich celková délka je asi 100 tisíc kilometrů! Ano, nejsme zapečetěni.

Oběhový systém

Oběhový systém (animace)

Lidský kardiovaskulární systém se skládá ze dvou kruhů krevního oběhu. S každým tepem se krev pohybuje v obou kruzích najednou.

Oběhový systém

  1. Deoxygenovaná krev z horní a dolní duté žíly vstupuje do pravé síně a pak do pravé komory.
  2. Z pravé komory je krev vtlačována do plicního trupu. Plicní tepny odebírají krev přímo do plic (před plicními kapilárami), kde přijímají kyslík a uvolňují oxid uhličitý.
  3. Po dostatečném množství kyslíku se krev vrátí do levé síně srdce přes plicní žíly.

Velký kruh krevního oběhu

  1. Z levé síně se krev pohybuje do levé komory, odkud je dále odčerpávána aortou do systémového oběhu.
  2. Poté, co prošla těžká cesta, krev přes duté žíly opět přichází do pravé síně srdce.

Za normálních okolností je množství krve vylité z komor srdce s každou kontrakcí stejné. Tudíž stejný objem krve proudí současně do velkých a malých kruhů.

Jaký je rozdíl mezi žíly a tepnami?

  • Žíly jsou určeny k transportu krve do srdce a úkolem tepen je dodávat krev v opačném směru.
  • V žilách je krevní tlak nižší než v tepnách. V souladu s tím se tepny stěn vyznačují větší elasticitou a hustotou.
  • Tepny nasycují "čerstvou" tkáň a žíly odebírají "odpadní" krev.
  • V případě vaskulárního poškození může být arteriální nebo venózní krvácení rozlišeno intenzitou a barvou krve. Arteriální - silný, pulzující, tlukot “fontány”, barva krve je jasná. Žilní krvácení konstantní intenzity (kontinuální tok), barva krve je tmavá.

Anatomická struktura srdce

Hmotnost srdce osoby je pouze asi 300 gramů (v průměru 250 g pro ženy a 330 g pro muže). Navzdory relativně nízké hmotnosti je to nepochybně hlavní sval v lidském těle a základ jeho vitální činnosti. Velikost srdce je skutečně přibližně stejná jako pěst člověka. Sportovci mohou mít srdce, které je jednou a půlkrát větší než srdce obyčejného člověka.

Srdce se nachází uprostřed hrudníku na úrovni 5-8 obratlů.

Spodní část srdce se obvykle nachází převážně v levé polovině hrudníku. Existuje varianta vrozené patologie, ve které jsou zrcadleny všechny orgány. Nazývá se transpozice vnitřních orgánů. Plíce, vedle které se nachází srdce (obvykle vlevo), mají menší velikost než druhá polovina.

Zadní plocha srdce se nachází v blízkosti páteře a přední část je bezpečně chráněna hrudní kostí a žebry.

Lidské srdce se skládá ze čtyř nezávislých dutin (komor) rozdělených přepážkami:

  • dvě horní - levé a pravé atria;
  • a dvě dolní - levé a pravé komory.

Pravá strana srdce zahrnuje pravou síň a komoru. Levá polovina srdce je reprezentována levou komorou a atriem.

Dolní a horní duté žíly vstupují do pravé síně a plicní žíly vstupují do levé síně. Plicní tepny (také nazývané plicní trup) vystupují z pravé komory. Z levé komory stoupá vzestupná aorta.

Struktura stěny srdce

Struktura stěny srdce

Srdce má ochranu před přetažením a jinými orgány, které se nazývají perikard nebo perikardiální vak (druh obálky, kde je orgán uzavřen). Má dvě vrstvy: vnější hustou pevnou pojivovou tkáň, zvanou vláknitou membránu perikardu a vnitřní (perikardiální serózní).

Následuje tlustá svalová vrstva - myokard a endokard (tenká vnitřní membrána pojivové tkáně).

Srdce se tedy skládá ze tří vrstev: epikardu, myokardu, endokardu. Je to kontrakce myokardu, která pumpuje krev tělními cévami.

Stěny levé komory jsou asi třikrát větší než stěny pravé komory! Tato skutečnost je vysvětlena skutečností, že funkce levé komory spočívá v tlačení krve do systémové cirkulace, kde reakce a tlak jsou mnohem vyšší než u malých.

Srdcové chlopně

Zařízení pro ventily srdce

Speciální srdeční chlopně umožňují neustále udržovat průtok krve v pravém (jednosměrném) směru. Ventily se otevírají a zavírají jeden po druhém, buď tím, že nechávají krev v krvi, nebo blokují její cestu. Je zajímavé, že všechny čtyři ventily jsou umístěny ve stejné rovině.

Mezi pravou síní a pravou komorou se nachází trikuspidální ventil. Obsahuje tři speciální destičky, schopné během kontrakce pravé komory poskytnout ochranu před reverzním proudem (regurgitací) krve v atriu.

Podobně, mitrální chlopně funguje, jen to je lokalizováno v levé straně srdce a je bicuspid v jeho struktuře.

Aortální chlopně zabraňuje odtoku krve z aorty do levé komory. Je zajímavé, že když se levá komora zkrátí, otevře se aortální chlopně v důsledku krevního tlaku, takže se dostane do aorty. Během diastoly (období relaxace srdce) pak zpětný tok krve z tepny přispívá k uzavření ventilů.

Normálně má aortální chlopně tři lístky. Nejběžnější vrozenou anomálií srdce je bicuspidální aortální chlopně. Tato patologie se vyskytuje ve 2% lidské populace.

Plicní (plicní) ventil v době kontrakce pravé komory umožňuje proudění krve do plicního trupu a během diastoly neumožňuje průtok v opačném směru. Také se skládá ze tří křídel.

Srdeční cévy a koronární oběh

Lidské srdce potřebuje jídlo a kyslík, stejně jako jakýkoli jiný orgán. Plavidla poskytující (vyživující) srdce krví se nazývají koronární nebo koronární. Tyto nádoby se oddělují od základny aorty.

Koronární tepny zásobují srdce krví, koronární žíly odstraňují deoxygenovanou krev. Tepny, které jsou na povrchu srdce, se nazývají epikardiální. Subendokardiální se nazývají koronární tepny skryté hluboko v myokardu.

Většina odtoku krve z myokardu se vyskytuje přes tři srdeční žíly: velké, střední a malé. Tvoří koronární sinus a spadají do pravé síně. Přední a vedlejší žíly srdce dodávají krev přímo do pravé síně.

Koronární tepny jsou rozděleny do dvou typů - vpravo a vlevo. Ten se skládá z přední interventrikulární a obálkové tepny. Do zadní, střední a malé žíly srdce se rozvětvuje velká srdeční žíla.

Dokonce i dokonale zdraví lidé mají své jedinečné rysy koronárního oběhu. Ve skutečnosti mohou plavidla vypadat a být umístěna odlišně, než je znázorněno na obrázku.

Jak se vyvíjí srdce?

Pro tvorbu všech tělesných systémů vyžaduje plod svůj vlastní krevní oběh. Proto je srdce prvním funkčním orgánem vznikajícím v těle lidského embrya, vyskytuje se přibližně ve třetím týdnu vývoje plodu.

Embryo na samém počátku je jen shluk buněk. V průběhu těhotenství se však stále více a více stávají a nyní jsou propojeni a tvoří se v naprogramovaných formách. Nejprve se vytvoří dvě trubky, které se pak spojí do jedné. Tato trubice je složena a spěchá dolů tvoří smyčku - primární srdeční smyčku. Tato smyčka je před všemi zbývajícími buňkami v růstu a je rychle prodloužena, pak leží vpravo (možná doleva, což znamená, že srdce bude umístěno jako zrcadlo) ve formě kruhu.

Obvykle tedy 22. den po početí dochází k první kontrakci srdce a do 26. dne má plod vlastní krevní oběh. Další vývoj zahrnuje výskyt septa, tvorbu chlopní a remodelaci srdečních komor. Příčky tvoří pátý týden a srdeční chlopně budou tvořeny devátým týdnem.

Zajímavé je, že srdce plodu začíná bít s frekvencí běžného dospělého - 75-80 řezů za minutu. Na začátku sedmého týdne je puls asi 165-185 úderů za minutu, což je maximální hodnota, následovaná zpomalením. Pulz novorozence je v rozsahu 120-170 řezů za minutu.

Fyziologie - princip lidského srdce

Vezměme podrobně principy a vzorce srdce.

Srdcový cyklus

Když je dospělý klidný, jeho srdce se stahuje kolem 70-80 cyklů za minutu. Jeden puls pulsu se rovná jednomu srdečnímu cyklu. S takovou rychlostí redukce trvá jeden cyklus přibližně 0,8 sekundy. V tomto období je síňová kontrakce 0,1 sekundy, komory - 0,3 sekundy a relaxační doba - 0,4 sekundy.

Frekvence cyklu je nastavena ovladačem tepové frekvence (část srdečního svalu, ve kterém vznikají impulsy, které regulují tepovou frekvenci).

Rozlišují se následující pojmy:

  • Systole (kontrakce) - téměř vždy, tento koncept implikuje kontrakci komor srdce, což vede k otřesu krve podél arteriálního kanálu a maximalizaci tlaku v tepnách.
  • Diastole (pauza) - období, kdy je srdeční sval v relaxační fázi. V tomto bodě jsou komory srdce naplněny krví a tlak v tepnách se snižuje.

Takže měření krevního tlaku vždy zaznamenejte dva indikátory. Jako příklad vezměte čísla 110/70, co to znamená?

  • 110 je horní číslo (systolický tlak), to znamená, že je to krevní tlak v tepnách v době srdečního tepu.
  • 70 je nižší číslo (diastolický tlak), to znamená, že je to krevní tlak v tepnách v době relaxace srdce.

Jednoduchý popis srdečního cyklu:

Cyklus srdce (animace)

V době relaxace srdce, atria, a komory (přes otevřené ventily), být naplněn krví.

  • Objevuje se systola (kontrakce) atria, která vám umožňuje zcela přesunout krev z předsíní do komor. Kontrakce síní začíná v místě přítoku žil do ní, což zaručuje primární stlačení úst a neschopnost krve proudit zpět do žil.
  • Atria se uvolní a ventily oddělují síni od komor (trikuspidální a mitrální) blízko. Vyskytuje se komorová systola.
  • Ventrikulární systola tlačí krev do aorty levou komorou a do plicní tepny pravou komorou.
  • Další přichází pauza (diastole). Cyklus se opakuje.
  • Podmíněně, pro jeden pulsní rytmus, tam jsou dva tepy srdce (dva systoles) - nejprve, atria je redukována, a pak komory. Kromě ventrikulární systoly je přítomna síňová systola. Kontrakce atrií nepředstavuje hodnotu v měřené práci srdce, protože v tomto případě je dostatečná doba relaxace (diastole) k naplnění komor krví. Jakmile však srdce začne častěji bít, stává se systolická systola rozhodující - bez ní by komory neměly čas na naplnění krví.

    Tlaky krve tepnami se provádějí pouze kontrakcí komor, tyto tlakové kontrakce se nazývají pulsy.

    Srdeční sval

    Jedinečnost srdečního svalu spočívá v jeho schopnosti rytmické automatické kontrakce, střídající se s relaxací, která probíhá nepřetržitě po celý život. Myokard (střední svalová vrstva srdce) atria a komor je rozdělen, což jim umožňuje uzavírat kontrakty odděleně.

    Kardiomyocyty - svalové buňky srdce se speciální strukturou, umožňující obzvláště koordinované přenášení vlny excitace. Existují dva typy kardiomyocytů:

    • obyčejní pracovníci (99% celkového počtu buněk srdečního svalu) jsou navrženi tak, aby přijímali signál z kardiostimulátoru pomocí vedení kardiomyocytů.
    • Kondenzační systém tvoří speciální vodivé (1% z celkového počtu buněk srdečního svalu) kardiomyocytů. Ve své funkci se podobají neuronům.

    Stejně jako kosterní sval je i sval srdce schopen zvýšit objem a zvýšit efektivitu své práce. Srdcový objem vytrvalostních sportovců může být o 40% větší než u obyčejného člověka! To je užitečná hypertrofie srdce, když se táhne a je schopna pumpovat více krve v jednom tahu. Existuje další hypertrofie - nazývaná "sportovní srdce" nebo "býčí srdce".

    Pointa je v tom, že někteří sportovci zvyšují hmotnost samotného svalu a ne jeho schopnost protáhnout se a protlačit velké objemy krve. Důvodem jsou nezodpovědné kompilované vzdělávací programy. Na základě kardio by mělo být postaveno naprosto jakékoliv fyzické cvičení, zejména síla. V opačném případě nadměrná fyzická námaha na nepřipraveném srdci způsobuje dystrofii myokardu, což vede k předčasné smrti.

    Systém srdečního vedení

    Vodivý systém srdce je skupina speciálních útvarů tvořených nestandardními svalovými vlákny (vodivé kardiomyocyty), které slouží jako mechanismus pro zajištění harmonické práce srdcových oddělení.

    Impulzní cesta

    Tento systém zajišťuje automatizaci srdce - excitaci impulsů narozených v kardiomyocytech bez vnějšího podnětu. Ve zdravém srdci je hlavním zdrojem impulzů sinusový uzel (sinusový uzel). Vede a překrývá impulsy všech ostatních kardiostimulátorů. Pokud se však vyskytne jakákoli choroba vedoucí ke syndromu slabosti sinusového uzlu, převezmou jeho funkci další části srdce. Atrioventrikulární uzel (automatické centrum druhého řádu) a svazek His (třetí řád) mohou být aktivovány, když je sinusový uzel slabý. Existují případy, kdy sekundární uzly zvyšují svůj vlastní automatismus a během normálního provozu sinusového uzlu.

    Sinusový uzel se nachází v horní zadní stěně pravé síně v bezprostřední blízkosti ústní dutiny. Tento uzel iniciuje pulsy s frekvencí asi 80-100 krát za minutu.

    Atrioventrikulární uzel (AV) se nachází v dolní části pravé síně atrioventrikulární přepážky. Tato přepážka zabraňuje šíření impulzů přímo do komor, obchází AV uzel. Pokud je sinusový uzel oslaben, pak atrioventrikulární přebírá jeho funkci a začne přenášet impulsy do srdečního svalu s frekvencí 40-60 kontrakcí za minutu.

    Pak atrioventrikulární uzel přechází do svazku His (atrioventrikulární svazek je rozdělen na dvě nohy). Pravá noha spěchá do pravé komory. Levá noha je rozdělena na dvě další poloviny.

    Situace s levou nohou svazku Jeho není zcela pochopena. Předpokládá se, že levá noha přední větve vláken spěchá k přední a boční stěně levé komory a zadní větev vláken poskytuje zadní stěnu levé komory a dolní části boční stěny.

    V případě slabosti sinusového uzlu a blokády atrioventrikulárního svazku je svazek His schopen vytvářet pulsy rychlostí 30-40 za minutu.

    Vodivostní systém se prohlubuje a pak se rozvětvuje do menších větví, případně se mění na Purkyňova vlákna, která pronikají celým myokardem a slouží jako transmisní mechanismus pro kontrakci svalů komor. Purkyňská vlákna jsou schopna iniciovat pulsy s frekvencí 15-20 za minutu.

    Výjimečně dobře vyškolení sportovci mohou mít normální tepovou frekvenci v klidu až po nejnižší zaznamenané číslo - pouze 28 tepů za minutu! Pro průměrného člověka, i když vede velmi aktivní životní styl, může být tepová frekvence pod 50 úderů za minutu známkou bradykardie. Pokud máte tak nízkou tepovou frekvenci, měli byste být vyšetřeni kardiologem.

    Srdeční rytmus

    Srdeční frekvence novorozence může být asi 120 úderů za minutu. S růstem se puls obyčejného člověka stabilizuje v rozmezí od 60 do 100 úderů za minutu. Dobře vyškolení sportovci (mluvíme o lidech s dobře vyškoleným kardiovaskulárním a respiračním systémem) mají puls 40 až 100 úderů za minutu.

    Rytmus srdce je řízen nervovým systémem - sympatiku posiluje kontrakce a parasympatiku oslabuje.

    Srdeční aktivita do určité míry závisí na obsahu iontů vápníku a draslíku v krvi. K regulaci srdečního rytmu přispívají i další biologicky aktivní látky. Naše srdce může začít bít častěji pod vlivem endorfinů a hormonů vylučovaných při poslechu vaší oblíbené hudby nebo polibku.

    Navíc endokrinní systém může mít významný vliv na srdeční rytmus - a na frekvenci kontrakcí a jejich sílu. Například uvolnění adrenalinu nadledvinkami způsobuje zvýšení tepové frekvence. Opačným hormonem je acetylcholin.

    Tóny srdce

    Jednou z nejjednodušších metod diagnostiky srdečních onemocnění je naslouchání hrudníku stetoskopem (auskultace).

    Ve zdravém srdci, když provádějí standardní auskultaci, jsou slyšet pouze dva srdeční zvuky - nazývají se S1 a S2:

    • S1 - zvuk je slyšet, když jsou atrioventrikulární (mitrální a trikuspidální) ventily uzavřeny během systoly (kontrakce) komor.
    • S2 - zvuk vznikající při uzavírání semilunárních (aortálních a plicních) ventilů během diastoly (relaxace) komor.

    Každý zvuk se skládá ze dvou složek, ale pro lidské ucho se spojí do jednoho, protože mezi nimi je velmi málo času. Pokud se za normálních auskultačních podmínek ozývají další tóny, může to znamenat onemocnění kardiovaskulárního systému.

    Někdy lze v srdci slyšet další anomální zvuky, které se nazývají srdeční zvuky. Přítomnost šumu zpravidla indikuje jakoukoliv patologii srdce. Například hluk může způsobit návrat krve v opačném směru (regurgitace) v důsledku nesprávného provozu nebo poškození ventilu. Nicméně, hluk není vždy příznakem nemoci. Pro objasnění důvodů vzniku dalších zvuků v srdci je třeba provést echokardiografii (ultrazvuk srdce).

    Onemocnění srdce

    Není divu, že počet kardiovaskulárních onemocnění roste ve světě. Srdce je komplexní orgán, který vlastně spočívá (jestliže to může být voláno odpočinek) jen v intervalech mezi tepy srdce. Jakýkoli složitý a neustále fungující mechanismus sám o sobě vyžaduje nejopatrnější přístup a neustálou prevenci.

    Představte si, jak na srdce dopadá monstrózní břemeno, vzhledem k našemu životnímu stylu a kvalitnímu bohatému jídlu. Je zajímavé, že úmrtnost na kardiovaskulární onemocnění je v zemích s vysokými příjmy poměrně vysoká.

    Obrovské množství potravin spotřebovaných obyvateli bohatých zemí a nekonečné snahy o peníze, jakož i související stresy, zničí naše srdce. Dalším důvodem šíření kardiovaskulárních onemocnění je hypodynamie - katastrofálně nízká fyzická aktivita, která ničí celé tělo. Nebo naopak negramotná vášeň pro těžká tělesná cvičení, která se často vyskytují na pozadí srdečních onemocnění, jejichž přítomnost lidé ani v průběhu „zdravotních“ cvičení nezajímají a nedokáží zemřít.

    Životní styl a zdraví srdce

    Hlavními faktory, které zvyšují riziko vzniku kardiovaskulárních onemocnění, jsou:

    • Obezita.
    • Vysoký krevní tlak.
    • Zvýšený cholesterol v krvi.
    • Hypodynamie nebo nadměrné cvičení.
    • Bohaté potraviny nízké kvality.
    • Depresivní emocionální stav a stres.

    Udělejte čtení tohoto skvělého článku zlom ve svém životě - vzdejte se špatných návyků a změňte svůj životní styl.